Using Ion Implantation to Fine-tune the Figure of Extremely Lightweight Mirrors

NASA

Completed Technology Project (2013 - 2015)

Project Introduction

Ion implantation can change the mechanical and electrical properties of a material. It is a mature technology that has found many applications, both in industry and in research. We are investigating a new and innovative application of this technology: fine-tuning the optical figure of thin (< 0.5mm) and lightweight (areal density < 1 kg/m2) x-ray mirrors. When successfully developed, this process would be able to significantly improve the fabrication process and the point-spread-function of future x-ray telescopes. This technique could be used as a step of fabricating x-ray optics for future astronomical missions.

Anticipated Benefits

N/A

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
☆Goddard Space Flight Center(GSFC)	Lead	NASA	Greenbelt,
	Organization	Center	Maryland

Using Ion Implantation to Finetune the Figure of Extremely Lightweight Mirrors Element

Table of Contents

Project Introduction Anticipated Benefits	1 1
Primary U.S. Work Locations	
and Key Partners	1
Images	2
Stories	2
Links	2
Project Website:	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	3

Center Independent Research & Development: GSFC IRAD

Using Ion Implantation to Fine-tune the Figure of Extremely Lightweight Mirrors

Completed Technology Project (2013 - 2015)

Primary U.S. Work Locations

Maryland

Images

Using Ion Implantation to Fine-tune the Figure of Extremely Lightweight Mirrors Element

Using Ion Implantation to Fine-tune the Figure of Extremely Lightweight Mirrors Element (https://techport.nasa.gov/imag e/3997)

Stories

Using Ion Implantation to Fine-Tune the Figure of Extremely Lightweight Mirrors

(https://techport.nasa.gov/file/1316)

Links

NTR 1438191592 (no url provided)

Project Website:

http://aetd.gsfc.nasa.gov/

Organizational Responsibility

Responsible Mission Directorate:

Mission Support Directorate (MSD)

Lead Center / Facility:

Goddard Space Flight Center (GSFC)

Responsible Program:

Center Independent Research & Development: GSFC IRAD

Project Management

Program Manager:

Peter M Hughes

Project Manager:

Stanley D Hunter

Principal Investigator:

William W Zhang

Technology Maturity (TRL)

Center Independent Research & Development: GSFC IRAD

Using Ion Implantation to Fine-tune the Figure of Extremely Lightweight Mirrors

Completed Technology Project (2013 - 2015)

Technology Areas

Primary:

- TX12 Materials, Structures, Mechanical Systems, and Manufacturing
 - └ TX12.4 Manufacturing
 - TX12.4.3 Electronics and Optics Manufacturing Process

